Part of Speech Tagging with NLTK – Part 2

November 10, 2008 at 2:42 pm (python) (, , )

Following up on Part of Speech Tagging with NLTK – Part 1, I test the accuracy of adding an AffixTagger and a RegexpTagger to my SequentialBackoffTagger chain.

Affix Tagging

The AffixTagger learns prefix and suffix patterns to determine the part of speech tag for word. I tried inserting the AffixTagger into every possible position of the ubt_tagger to see which method increased accuracy the most. As you’ll see in the results, the aubt_tagger had the highest accuracy.

ubta_tagger = backoff_tagger(train_sents, [nltk.tag.UnigramTagger, nltk.tag.BigramTagger, nltk.tag.TrigramTagger, nltk.tag.AffixTagger])
ubat_tagger = backoff_tagger(train_sents, [nltk.tag.UnigramTagger, nltk.tag.BigramTagger, nltk.tag.AffixTagger, nltk.tag.TrigramTagger])
uabt_tagger = backoff_tagger(train_sents, [nltk.tag.UnigramTagger, nltk.tag.AffixTagger, nltk.tag.BigramTagger, nltk.tag.TrigramTagger])
aubt_tagger = backoff_tagger(train_sents, [nltk.tag.AffixTagger, nltk.tag.UnigramTagger, nltk.tag.BigramTagger, nltk.tag.TrigramTagger])

Regexp Tagging

The RegexpTagger allows you to define your own word patterns for determining the part of speech tag. Some of the patterns defined below were taken from chapter 3 of the NLTK book, others I added myself. Since I had already determined that the aubt_tagger was the most accurate, I only tested the RegexpTagger at the beginning and end of the chain.

word_patterns = [
	(r'^-?[0-9]+(.[0-9]+)?$', 'CD'),
	(r'.*ould$', 'MD'),
	(r'.*ing$', 'VBG'),
	(r'.*ed$', 'VBD'),
	(r'.*ness$', 'NN'),
	(r'.*ment$', 'NN'),
	(r'.*ful$', 'JJ'),
	(r'.*ious$', 'JJ'),
	(r'.*ble$', 'JJ'),
	(r'.*ic$', 'JJ'),
	(r'.*ive$', 'JJ'),
	(r'.*ic$', 'JJ'),
	(r'.*est$', 'JJ'),
	(r'^a$', 'PREP'),
]

aubtr_tagger = nltk.tag.RegexpTagger(word_patterns, backoff=aubt_tagger)
raubt_tagger = backoff_tagger(train_sents, [nltk.tag.AffixTagger, nltk.tag.UnigramTagger, nltk.tag.BigramTagger, nltk.tag.TrigramTagger],
    backoff=nltk.tag.RegexpTagger(word_patterns))

Affix and Regexp Tagging Accuracy

Conclusion

As you can see, the aubt_tagger provided the most gain over the ubt_tagger, and the raubt_tagger had a slight gain on top of that. In Part 3 I’ll discuss the results of using the BrillTagger to push the accuracy even higher.

Advertisements

1 Comment

  1. Part of Speech Tagging with NLTK - Part 1 « Stream Hacker said,

    […] in Part of Speech Tagging with NLTK – Part 2, I do further testing using the AffixTagger and the RegexpTagger to get the accuracy up past […]

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: